Blocking Caspase-1/Gsdmd and Caspase-3/-8/Gsdme pyroptotic pathways rescues silicosis in mice

Author:

Kang Lulu,Dai Jinghong,Wang Yufang,Shi Peiliang,Zou Yujie,Pei Jingwen,Tian Yaqiong,Zhang Ji,Buranasudja Visarut Codey,Chen Jingyu,Cai Hourong,Gao Xiang,Lin ZhaoyuORCID

Abstract

Millions of patients suffer from silicosis, but it remains an uncurable disease due to its unclear pathogenic mechanisms. Though the Nlrp3 inflammasome is involved in silicosis pathogenesis, inhibition of its classic downstream factors, Caspase-1 and Gsdmd, fails to block pyroptosis and cytokine release. To clarify the molecular mechanism of silicosis pathogenesis for new therapy, we examined samples from silicosis patients and genetic mouse models. We discovered an alternative pyroptotic pathway which requires cleavage of Gsdme by Caspases-3/8 in addition to Caspase-1/Gsdmd. Consistently, Gsdmd-/-Gsdme-/- mice showed markedly attenuated silicosis pathology, and Gsdmd-/-Gsdme-/- macrophages were resistant to silica-induced pyroptosis. Furthermore, we found that in addition to Caspase 1, Caspase-8 cleaved IL-1β in silicosis, explaining why Caspase-1-/- mice also suffered from silicosis. Finally, we found that inhibitors of Caspase-1, -3, -8 or an FDA approved drug, dimethyl fumarate, could dramatically alleviate silicosis pathology through blocking cleavage of Gsdmd and Gsdme. This study highlights that Caspase-1/Gsdmd and Caspase-3/8/Gsdme-dependent pyroptosis is essential for the development of silicosis, implicating new potential targets and drug for silicosis treatment.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Collaborative Innovation of Industry, University and Research Institute Major Program of Guangzhou

90TH ANNIVERSARY OF CHULALONGKORN UNIVERSITY FUND

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3