ZmARF1 positively regulates low phosphorus stress tolerance via modulating lateral root development in maize

Author:

Wu Fengkai,Yahaya Baba Salifu,Gong Ying,He Bing,Gou JunlinORCID,He Yafeng,Li JingORCID,Kang Yan,Xu JieORCID,Wang QingjunORCID,Feng Xuanjun,Tang Qi,Liu Yaxi,Lu YanliORCID

Abstract

Phosphorus (P) deficiency is one of the most critical factors for plant growth and productivity, including its inhibition of lateral root initiation. Auxin response factors (ARFs) play crucial roles in root development via auxin signaling mediated by genetic pathways. In this study, we found that the transcription factor ZmARF1 was associated with low inorganic phosphate (Pi) stress-related traits in maize. This superior root morphology and greater phosphate stress tolerance could be ascribed to the overexpression of ZmARF1. The knock out mutant zmarf1 had shorter primary roots, fewer root tip number, and lower root volume and surface area. Transcriptomic data indicate that ZmLBD1, a direct downstream target gene, is involved in lateral root development, which enhances phosphate starvation tolerance. A transcriptional activation assay revealed that ZmARF1 specifically binds to the GC-box motif in the promoter of ZmLBD1 and activates its expression. Moreover, ZmARF1 positively regulates the expression of ZmPHR1, ZmPHT1;2, and ZmPHO2, which are key transporters of Pi in maize. We propose that ZmARF1 promotes the transcription of ZmLBD1 to modulate lateral root development and Pi-starvation induced (PSI) genes to regulate phosphate mobilization and homeostasis under phosphorus starvation. In addition, ZmERF2 specifically binds to the ABRE motif of the promoter of ZmARF1 and represses its expression. Collectively, the findings of this study revealed that ZmARF1 is a pivotal factor that modulates root development and confers low-Pi stress tolerance through the transcriptional regulation of the biological function of ZmLBD1 and the expression of key Pi transport proteins.

Funder

National Key R&D Program of China

Key Program of National Natural Science Foundation of China

National Natural Science Foundation of China

Key Research and Development Program of Sichuan Province

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3