Abstract
Spatiotemporal expression can be achieved by transport and translation of mRNAs at defined subcellular sites. An emerging mechanism mediating mRNA trafficking is microtubule-dependent co-transport on shuttling endosomes. Although progress has been made in identifying various components of the endosomal mRNA transport machinery, a mechanistic understanding of how these RNA-binding proteins are connected to endosomes is still lacking. Here, we demonstrate that a flexible MademoiseLLE (MLLE) domain platform within RNA-binding protein Rrm4 of Ustilago maydis is crucial for endosomal attachment. Our structure/function analysis uncovered three MLLE domains at the C-terminus of Rrm4 with a functionally defined hierarchy. MLLE3 recognises two PAM2-like sequences of the adaptor protein Upa1 and is essential for endosomal shuttling of Rrm4. MLLE1 and MLLE2 are most likely accessory domains exhibiting a variable binding mode for interaction with currently unknown partners. Thus, endosomal attachment of the mRNA transporter is orchestrated by a sophisticated MLLE domain binding platform.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Public Library of Science (PLoS)
Subject
Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics
Reference67 articles.
1. SnapShot: Subcellular mRNA localization;M Mofatteh;Cell,2017
2. Intracellular mRNA transport and localized translation;S Das;Nat Rev Mol Cell Biol,2021
3. RNA transport and local translation in neurodevelopmental and neurodegenerative disease;MS Fernandopulle;Nature neuroscience,2021
4. mRNA transport in fungal top models;D Niessing;Wiley interdisciplinary reviews RNA,2018
5. Linking transport and translation of mRNAs with endosomes and mitochondria;K Müntjes;EMBO reports,2021
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献