Deciphering the RNA-binding protein network during endosomal mRNA transport

Author:

Devan Senthil-Kumar,Shanmugasundaram Sainath,Müntjes Kira,Smits Sander HJ,Altegoer Florian,Feldbrügge MichaelORCID

Abstract

AbstractMicrotubule-dependent endosomal transport is crucial for polar growth, ensuring the precise distribution of cellular cargos such as proteins and mRNAs. However, the molecular mechanism linking mRNAs to the endosomal surface remains poorly understood. Here, we present a structural analysis of the key RNA-binding protein Rrm4 fromUstilago maydis. Our findings reveal a new type of MademoiseLLE domain featuring a seven-helical bundle that provides a distinct binding interface. A comparative analysis with the canonical MLLE domain of the poly(A)-binding protein Pab1 disclosed unique characteristics of both domains. Deciphering the MLLE binding code enabled prediction and verification of previously unknown Rrm4 interactors containing short linear motifs. Importantly, we demonstrated that the human MLLE domains, such as those of PABPC1 and UBR5, employed a similar principle to distinguish among interaction partners. Thus, our study provides unprecedented mechanistic insights into how structural variations in the widely distributed MLLE domain facilitates mRNA attachment during endosomal transport.SignificancePolar growing cells, such as fungal hyphae and neurons, utilize endosomes to transport mRNAs along their microtubules. But how do these mRNAs precisely attach to endosomes? Our study addresses this question by investing the key mRNA transporter, Rrm4, in a fungal model microorganism. We uncovered new features of a protein-protein interaction domain that recognizes specific short linear motifs in binding partners. While this domain resembles one found in the poly(A)-binding protein, it exhibits distinct motif recognition. Deciphering the underlying binding code unveiled new interaction partners for Rrm4. The recognition system is used to form a resilient network of RNA-binding proteins (RBPs) and their interaction partners during endosomal transport. This principle is applicable to humans, highlighting its fundamental importance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3