Abstract
In plants, the effective mobilization of seed nutrient reserves is crucial during germination and for seedling establishment. The Arabidopsis H+-PPase-loss-of-function fugu5 mutants exhibit a reduced number of cells in the cotyledons. This leads to enhanced post-mitotic cell expansion, also known as compensated cell enlargement (CCE). While decreased cell numbers have been ascribed to reduced gluconeogenesis from triacylglycerol, the molecular mechanisms underlying CCE remain ill-known. Given the role of indole 3-butyric acid (IBA) in cotyledon development, and because CCE in fugu5 is specifically and completely cancelled by ech2, which shows defective IBA-to-indoleacetic acid (IAA) conversion, IBA has emerged as a potential regulator of CCE. Here, to further illuminate the regulatory role of IBA in CCE, we used a series of high-order mutants that harbored a specific defect in IBA-to-IAA conversion, IBA efflux, IAA signaling, or vacuolar type H+-ATPase (V-ATPase) activity and analyzed the genetic interaction with fugu5–1. We found that while CCE in fugu5 was promoted by IBA, defects in IBA-to-IAA conversion, IAA response, or the V-ATPase activity alone cancelled CCE. Consistently, endogenous IAA in fugu5 reached a level 2.2-fold higher than the WT in 1-week-old seedlings. Finally, the above findings were validated in icl–2, mls–2, pck1–2 and ibr10 mutants, in which CCE was triggered by low sugar contents. This provides a scenario in which following seed germination, the low-sugar-state triggers IAA synthesis, leading to CCE through the activation of the V-ATPase. These findings illustrate how fine-tuning cell and organ size regulation depend on interplays between metabolism and IAA levels in plants.
Funder
Ministry of Education, Culture, Sports, Science and Technology
the naito foundation
Publisher
Public Library of Science (PLoS)
Subject
Cancer Research,Genetics(clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献