Abstract
Circulating inflammatory markers are essential to human health and disease, and they are often dysregulated or malfunctioning in cancers as well as in cardiovascular, metabolic, immunologic and neuropsychiatric disorders. However, the genetic contribution to the physiological variation of levels of circulating inflammatory markers is largely unknown. Here we report the results of a genome-wide genetic study of blood concentration of ten cytokines, including the hitherto unexplored calcium-binding protein (S100B). The study leverages a unique sample of neonatal blood spots from 9,459 Danish subjects from the iPSYCH initiative. We estimate the SNP-heritability of marker levels as ranging from essentially zero for Erythropoietin (EPO) up to 73% for S100B. We identify and replicate 16 associated genomic regions (p < 5 x 10−9), of which four are novel. We show that the associated variants map to enhancer elements, suggesting a possible transcriptional effect of genomic variants on the cytokine levels. The identification of the genetic architecture underlying the basic levels of cytokines is likely to prompt studies investigating the relationship between cytokines and complex disease. Our results also suggest that the genetic architecture of cytokines is stable from neonatal to adult life.
Funder
National Institutes of Health
Norges Forskningsråd
Lundbeckfonden
Novo Nordisk Fonden
Publisher
Public Library of Science (PLoS)
Subject
Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献