Evolution of plasticity in production and transgenerational inheritance of small RNAs under dynamic environmental conditions

Author:

Silva Willian T. A. F.ORCID,Otto Sarah P.ORCID,Immler SimoneORCID

Abstract

In a changing environment, small RNAs (sRNAs) play an important role in the post-transcriptional regulation of gene expression and can vary in abundance depending on the conditions experienced by an individual (phenotypic plasticity) and its parents (non-genetic inheritance). Many sRNAs are unusual in that they can be produced in two ways, either using genomic DNA as the template (primary sRNAs) or existing sRNAs as the template (secondary sRNAs). Thus, organisms can evolve rapid plastic responses to their current environment by adjusting the amplification rate of sRNA templates. sRNA levels can also be transmitted transgenerationally by the direct transfer of either sRNAs or the proteins involved in amplification. Theory is needed to describe the selective forces acting on sRNA levels, accounting for the dual nature of sRNAs as regulatory elements and templates for amplification and for the potential to transmit sRNAs and their amplification agents to offspring. Here, we develop a model to study the dynamics of sRNA production and inheritance in a fluctuating environment. We tested the selective advantage of mutants capable of sRNA-mediated phenotypic plasticity within resident populations with fixed levels of sRNA transcription. Even when the resident was allowed to evolve an optimal constant rate of sRNA production, plastic amplification rates capable of responding to environmental conditions were favored. Mechanisms allowing sRNA transcripts or amplification agents to be inherited were favored primarily when parents and offspring face similar environments and when selection acts before the optimal level of sRNA can be reached within the organism. Our study provides a clear set of testable predictions for the evolution of sRNA-related mechanisms of phenotypic plasticity and transgenerational inheritance.

Funder

Sven and Lilly Lawski Foundation

Natural Sciences and Engineering Research Council of Canada

European Research Council

Human Frontier Science Program

Knut och Alice Wallenbergs Stiftelse

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics(clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference97 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3