Humans decompose tasks by trading off utility and computational cost

Author:

Correa Carlos G.ORCID,Ho Mark K.,Callaway Frederick,Daw Nathaniel D.,Griffiths Thomas L.

Abstract

Human behavior emerges from planning over elaborate decompositions of tasks into goals, subgoals, and low-level actions. How are these decompositions created and used? Here, we propose and evaluate a normative framework for task decomposition based on the simple idea that people decompose tasks to reduce the overall cost of planning while maintaining task performance. Analyzing 11,117 distinct graph-structured planning tasks, we find that our framework justifies several existing heuristics for task decomposition and makes predictions that can be distinguished from two alternative normative accounts. We report a behavioral study of task decomposition (N = 806) that uses 30 randomly sampled graphs, a larger and more diverse set than that of any previous behavioral study on this topic. We find that human responses are more consistent with our framework for task decomposition than alternative normative accounts and are most consistent with a heuristic—betweenness centrality—that is justified by our approach. Taken together, our results suggest the computational cost of planning is a key principle guiding the intelligent structuring of goal-directed behavior.

Funder

John Templeton Foundation

Air Force Office of Scientific Research

Army Research Office

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference46 articles.

1. Hierarchically organized behavior and its neural foundations: a reinforcement learning perspective;MM Botvinick;Cognition,2009

2. Computational evidence for hierarchically structured reinforcement learning in humans;MK Eckstein;Proceedings of the National Academy of Sciences,2020

3. Neural Mechanisms of Hierarchical Planning in a Virtual Subway Network;J Balaguer;Neuron,2016

4. Habitual control of goal selection in humans;F Cushman;Proceedings of the National Academy of Sciences,2015

5. The hippocampus as a predictive map;KL Stachenfeld;Nature Neuroscience,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3