MitoTNT: Mitochondrial Temporal Network Tracking for 4D live-cell fluorescence microscopy data

Author:

Wang ZichenORCID,Natekar ParthORCID,Tea Challana,Tamir Sharon,Hakozaki HiroyukiORCID,Schöneberg JohannesORCID

Abstract

Mitochondria form a network in the cell that rapidly changes through fission, fusion, and motility. Dysregulation of this four-dimensional (4D: x,y,z,time) network is implicated in numerous diseases ranging from cancer to neurodegeneration. While lattice light-sheet microscopy has recently made it possible to image mitochondria in 4D, quantitative analysis methods for the resulting datasets have been lacking. Here we present MitoTNT, the first-in-class software forMitochondrialTemporalNetworkTracking in 4D live-cell fluorescence microscopy data. MitoTNT uses spatial proximity and network topology to compute an optimal tracking assignment. To validate the accuracy of tracking, we created a reaction-diffusion simulation to model mitochondrial network motion and remodeling events. We found that our tracking is >90% accurate for ground-truth simulations and agrees well with published motility results for experimental data. We used MitoTNT to quantify 4D mitochondrial networks from human induced pluripotent stem cells. First, we characterized sub-fragment motility and analyzed network branch motion patterns. We revealed that the skeleton node motion is correlated along branch nodes and is uncorrelated in time. Second, we identified fission and fusion events with high spatiotemporal resolution. We found that mitochondrial skeleton nodes near the fission/fusion sites move nearly twice as fast as random skeleton nodes and that microtubules play a role in mediating selective fission/fusion. Finally, we developed graph-based transport simulations that model how material would distribute on experimentally measured mitochondrial temporal networks. We showed that pharmacological perturbations increase network reachability but decrease network resilience through a combination of altered mitochondrial fission/fusion dynamics and motility. MitoTNT’s easy-to-use tracking module, interactive 4D visualization capability, and powerful post-tracking analyses aim at making temporal network tracking accessible to the wider mitochondria research community.

Funder

Hartwell Foundation

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3