Mitochondrial network branching enables rapid protein spread with slower mitochondrial dynamics

Author:

Chuphal PrabhaORCID,Brown Aidan I.ORCID

Abstract

Mitochondrial network structure is controlled by the dynamical processes of fusion and fission, which merge and split mitochondrial tubes into structures including branches and loops. To investigate the impact of mitochondrial network dynamics and structure on the spread of proteins and other molecules through mitochondrial networks, we used stochastic simulations of two distinct quantitative models that each included mitochondrial fusion and fission, and particle diffusion via the network. Better-connected mitochondrial networks and networks with faster dynamics exhibit more rapid particle spread on the network, with little further improvement once a network has become well-connected. As fragmented networks gradually become better-connected, particle spread either steadily improves until the networks become well-connected for slow-diffusing particles or plateaus for fast-diffusing particles. We compared model mitochondrial networks with both end-to-end and end-to-side fusion, which form branches, to non-branching model networks that lack end-to-side fusion. To achieve the optimum (most rapid) spread that occurs on well-connected branching networks, non-branching networks require much faster fusion and fission dynamics. Thus the process of end-to-side fusion, which creates branches in mitochondrial networks, enables rapid spread of particles on the network with relatively slow fusion and fission dynamics. This modeling of protein spread on mitochondrial networks builds towards mechanistic understanding of how mitochondrial structure and dynamics regulate mitochondrial function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3