Intra-tumor heterogeneity, turnover rate and karyotype space shape susceptibility to missegregation-induced extinction

Author:

Kimmel Gregory J.ORCID,Beck Richard J.,Yu Xiaoqing,Veith ThomasORCID,Bakhoum Samuel,Altrock Philipp M.ORCID,Andor NoemiORCID

Abstract

The phenotypic efficacy of somatic copy number alterations (SCNAs) stems from their incidence per base pair of the genome, which is orders of magnitudes greater than that of point mutations. One mitotic event stands out in its potential to significantly change a cell’s SCNA burden–a chromosome missegregation. A stochastic model of chromosome mis-segregations has been previously developed to describe the evolution of SCNAs of a single chromosome type. Building upon this work, we derive a general deterministic framework for modeling missegregations of multiple chromosome types. The framework offers flexibility to model intra-tumor heterogeneity in the SCNAs of all chromosomes, as well as in missegregation- and turnover rates. The model can be used to test how selection acts upon coexisting karyotypes over hundreds of generations. We use the model to calculate missegregation-induced population extinction (MIE) curves, that separate viable from non-viable populations as a function of their turnover- and missegregation rates. Turnover- and missegregation rates estimated from scRNA-seq data are then compared to theoretical predictions. We find convergence of theoretical and empirical results in both the location of MIE curves and the necessary conditions for MIE. When a dependency of missegregation rate on karyotype is introduced, karyotypes associated with low missegregation rates act as a stabilizing refuge, rendering MIE impossible unless turnover rates are exceedingly high. Intra-tumor heterogeneity, including heterogeneity in missegregation rates, increases as tumors progress, rendering MIE unlikely.

Funder

National Cancer Institute

Moffitt Cancer Center Evolutionary Therapy Center of Excellence

Richard O. Jacobson Foundation

William G. ’Bill’ Bankhead Jr and David Coley Cancer Research Program

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3