sumSTAAR: A flexible framework for gene-based association studies using GWAS summary statistics

Author:

Belonogova Nadezhda M.ORCID,Svishcheva Gulnara R.ORCID,Kirichenko Anatoly V.,Zorkoltseva Irina V.ORCID,Tsepilov Yakov A.ORCID,Axenovich Tatiana I.ORCID

Abstract

Gene-based association analysis is an effective gene-mapping tool. Many gene-based methods have been proposed recently. However, their power depends on the underlying genetic architecture, which is rarely known in complex traits, and so it is likely that a combination of such methods could serve as a universal approach. Several frameworks combining different gene-based methods have been developed. However, they all imply a fixed set of methods, weights and functional annotations. Moreover, most of them use individual phenotypes and genotypes as input data. Here, we introduce sumSTAAR, a framework for gene-based association analysis using summary statistics obtained from genome-wide association studies (GWAS). It is an extended and modified version of STAAR framework proposed by Li and colleagues in 2020. The sumSTAAR framework offers a wider range of gene-based methods to combine. It allows the user to arbitrarily define a set of these methods, weighting functions and probabilities of genetic variants being causal. The methods used in the framework were adapted to analyse genes with large number of SNPs to decrease the running time. The framework includes the polygene pruning procedure to guard against the influence of the strong GWAS signals outside the gene. We also present new improved matrices of correlations between the genotypes of variants within genes. These matrices estimated on a sample of 265,000 individuals are a state-of-the-art replacement of widely used matrices based on the 1000 Genomes Project data.

Funder

a budget project of the Institute of Cytology and Genetics

Российский Фонд Фундаментальных Исследований

5-100 Best Universities

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3