Understanding the impact of mobility on COVID-19 spread: A hybrid gravity-metapopulation model of COVID-19

Author:

Iyaniwura Sarafa A.ORCID,Ringa Notice,Adu Prince A.,Mak Sunny,Janjua Naveed Z.,Irvine Michael A.,Otterstatter Michael

Abstract

The outbreak of the severe acute respiratory syndrome coronavirus 2 started in Wuhan, China, towards the end of 2019 and spread worldwide. The rapid spread of the disease can be attributed to many factors including its high infectiousness and the high rate of human mobility around the world. Although travel/movement restrictions and other non-pharmaceutical interventions aimed at controlling the disease spread were put in place during the early stages of the pandemic, these interventions did not stop COVID-19 spread. To better understand the impact of human mobility on the spread of COVID-19 between regions, we propose a hybrid gravity-metapopulation model of COVID-19. Our modeling framework has the flexibility of determining mobility between regions based on the distances between the regions or using data from mobile devices. In addition, our model explicitly incorporates time-dependent human mobility into the disease transmission rate, and has the potential to incorporate other factors that affect disease transmission such as facemasks, physical distancing, contact rates, etc. An important feature of this modeling framework is its ability to independently assess the contribution of each factor to disease transmission. Using a Bayesian hierarchical modeling framework, we calibrate our model to the weekly reported cases of COVID-19 in thirteen local health areas in Metro Vancouver, British Columbia (BC), Canada, from July 2020 to January 2021. We consider two main scenarios in our model calibration: using a fixed distance matrix and time-dependent weekly mobility matrices. We found that the distance matrix provides a better fit to the data, whilst the mobility matrices have the ability to explain the variance in transmission between regions. This result shows that the mobility data provides more information in terms of disease transmission than the distances between the regions.

Funder

Michael Smith Health Research BC

Canadian Institutes of Health Research

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference84 articles.

1. World Health Organization (WHO). WHO’s COVID-19 response timeline; (accessed April 17, 2022).

2. World Health Organization (WHO). WHO Coronavirus (COVID-19) Dashboard; (accessed April 17, 2022).

3. COVID-19 and its modes of transmission;R Karia;SN comprehensive clinical medicine,2020

4. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient;SWX Tan;Jama,2020

5. World Health Organization (WHO). Scientific Brief: Transmission of SARS-CoV-2: implications for infection prevention precautions; (accessed August 3, 2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3