Ten quick tips for computational analysis of medical images

Author:

Chicco DavideORCID,Shiradkar Rakesh

Abstract

Medical imaging is a great asset for modern medicine, since it allows physicians to spatially interrogate a disease site, resulting in precise intervention for diagnosis and treatment, and to observe particular aspect of patients’ conditions that otherwise would not be noticeable. Computational analysis of medical images, moreover, can allow the discovery of disease patterns and correlations among cohorts of patients with the same disease, thus suggesting common causes or providing useful information for better therapies and cures. Machine learning and deep learning applied to medical images, in particular, have produced new, unprecedented results that can pave the way to advanced frontiers of medical discoveries. While computational analysis of medical images has become easier, however, the possibility to make mistakes or generate inflated or misleading results has become easier, too, hindering reproducibility and deployment. In this article, we provide ten quick tips to perform computational analysis of medical images avoiding common mistakes and pitfalls that we noticed in multiple studies in the past. We believe our ten guidelines, if taken into practice, can help the computational–medical imaging community to perform better scientific research that eventually can have a positive impact on the lives of patients worldwide.

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference125 articles.

1. MRI brain tumor medical images analysis using deep learning techniques: a systematic review;SAY Al-Galal;Health and Technology,2021

2. Medical images analysis based on multilabel classification;EAA Maksoud;Machine Learning in Bio-Signal Analysis and Diagnostic Imaging,2019

3. Medical images analysis based on fractal dimension and wavelet transform;R Farouk;Journal of Computer Science Approaches,2016

4. A few useful things to know about machine learning;P. Domingos;Communications of the ACM,2012

5. Ten quick tips for machine learning in computational biology;D Chicco;BioData Mining,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3