MRI brain tumor medical images analysis using deep learning techniques: a systematic review
Author:
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Link
http://link.springer.com/content/pdf/10.1007/s12553-020-00514-6.pdf
Reference137 articles.
1. Muller H, M. Deserno T. Content-Based Medical Image Retrieval Henning. Biomedical Image Processing (Biological and Medical Physics, Biomedical Engineering). 2011;55–76. https://doi.org/10.1007/978-3-642-15816-2.
2. Chen S, Ding C, Liu M. Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recogn. 2019;88:90–100. https://doi.org/10.1016/j.patcog.2018.11.009.
3. Wachinger C, Reuter M, Klein T. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy. NeuroImage. 2018;170:434–45. https://doi.org/10.1016/j.neuroimage.2017.02.035.
4. Johnson DR, Guerin JB, Giannini C, Morris JM, Eckel LJ, Kaufmann TJ. 2016 updates to the WHO brain tumor classification system: What the radiologist needs to know. Radiographics. 2017;37(7):2164–80. https://doi.org/10.1148/rg.2017170037.
5. DeAngelis. BRAIN TUMORS. 2001;344(2): 114–123.
Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Biologically Inspired Spiking CNN for Brain Tumor Classification;2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN);2024-07-03
2. Brain Tumor Detection and Classification Using Deep Learning;2024 International Conference on Smart Systems for Electrical, Electronics, Communication and Computer Engineering (ICSSEECC);2024-06-28
3. An integrated deep learning and supervised learning approach for early detection of brain tumor using magnetic resonance imaging;Healthcare Analytics;2024-06
4. CNN-based glioma detection in MRI: A deep learning approach;Technology and Health Care;2024-05-23
5. Visibility enhancement of brain tumor affected MRI images using adaptive heuristic process;Health and Technology;2024-03-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3