Understanding glioblastoma invasion using physically-guided neural networks with internal variables

Author:

Ayensa-Jiménez JacoboORCID,Doweidar Mohamed H.ORCID,Sanz-Herrera Jose A.ORCID,Doblare Manuel

Abstract

Microfluidic capacities for both recreating and monitoring cell cultures have opened the door to the use of Data Science and Machine Learning tools for understanding and simulating tumor evolution under controlled conditions. In this work, we show how these techniques could be applied to study Glioblastoma, the deadliest and most frequent primary brain tumor. In particular, we study Glioblastoma invasion using the recent concept of Physically-Guided Neural Networks with Internal Variables (PGNNIV), able to combine data obtained from microfluidic devices and some physical knowledge governing the tumor evolution. The physics is introduced in the network structure by means of a nonlinear advection-diffusion-reaction partial differential equation that models the Glioblastoma evolution. On the other hand, multilayer perceptrons combined with a nodal deconvolution technique are used for learning the go or grow metabolic behavior which characterises the Glioblastoma invasion. The PGNNIV is here trained using synthetic data obtained from in silico tests created under different oxygenation conditions, using a previously validated model. The unravelling capacity of PGNNIV enables discovering complex metabolic processes in a non-parametric way, thus giving explanatory capacity to the networks, and, as a consequence, surpassing the predictive power of any parametric approach and for any kind of stimulus. Besides, the possibility of working, for a particular tumor, with different boundary and initial conditions, permits the use of PGNNIV for defining virtual therapies and for drug design, thus making the first steps towards in silico personalised medicine.

Funder

Ministerio de Ciencia, Innovación y Universidades

Gobierno de Aragón

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference75 articles.

1. Organization WH, et al. WHO report on cancer: setting priorities, investing wisely and providing care for all. 2020;.

2. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010;QT Ostrom;Neuro-oncology,2013

3. Radiotherapy plus concomitant adjuvant temozolomide for glioblastoma: Japanese mono-institutional results;T Oike;PLoS One,2013

4. Glioblastoma: biology, genetics, and behavior;DJ Brat;American Society of Clinical Oncology Educational Book,2012

5. Glioblastoma heterogeneity and cancer cell plasticity;D Friedmann-Morvinski;Critical Reviews™ in Oncogenesis,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3