Infer global, predict local: Quantity-relevance trade-off in protein fitness predictions from sequence data

Author:

Posani LorenzoORCID,Rizzato Francesca,Monasson RémiORCID,Cocco SimonaORCID

Abstract

Predicting the effects of mutations on protein function is an important issue in evolutionary biology and biomedical applications. Computational approaches, ranging from graphical models to deep-learning architectures, can capture the statistical properties of sequence data and predict the outcome of high-throughput mutagenesis experiments probing the fitness landscape around some wild-type protein. However, how the complexity of the models and the characteristics of the data combine to determine the predictive performance remains unclear. Here, based on a theoretical analysis of the prediction error, we propose descriptors of the sequence data, characterizing their quantity and relevance relative to the model. Our theoretical framework identifies a trade-off between these two quantities, and determines the optimal subset of data for the prediction task, showing that simple models can outperform complex ones when inferred from adequately-selected sequences. We also show how repeated subsampling of the sequence data is informative about how much epistasis in the fitness landscape is not captured by the computational model. Our approach is illustrated on several protein families, as well as on in silico solvable protein models.

Funder

Agence Nationale de la Recherche

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference71 articles.

1. Empirical fitness landscapes and the predictability of evolution;JAG De Visser;Nature Reviews Genetics,2014

2. Evolutionary biochemistry: revealing the historical and physical causes of protein properties;MJ Harms;Nature Reviews Genetics,2013

3. Wright S, Jones DF. Proceedings of the Sixth International Congress of Genetics. In: Proceedings of the Sixth International Congress of Genetics. vol. 1; 1932. p. 356–366.

4. The genetic theory of adaptation: a brief history;HA Orr;Nature Reviews Genetics,2005

5. Experimental tests of the roles of adaptation, chance, and history in evolution;M Travisano;Science,1995

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Functional effects of mutations in proteins can be predicted and interpreted by guided selection of sequence covariation information;Proceedings of the National Academy of Sciences;2024-06-18

2. Is Novelty Predictable?;Cold Spring Harbor Perspectives in Biology;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3