Functional effects of mutations in proteins can be predicted and interpreted by guided selection of sequence covariation information

Author:

Cocco Simona1ORCID,Posani Lorenzo1,Monasson Rémi1ORCID

Affiliation:

1. Laboratory of Physics of the Ecole Normale Supérieure, CNRS UMR8023 and Paris Sciences & Lettres (PSL) Research, Sorbonne Université, 75005 Paris, France

Abstract

Predicting the effects of one or more mutations to the in vivo or in vitro properties of a wild-type protein is a major computational challenge, due to the presence of epistasis, that is, of interactions between amino acids in the sequence. We introduce a computationally efficient procedure to build minimal epistatic models to predict mutational effects by combining evolutionary (homologous sequence) and few mutational-scan data. Mutagenesis measurements guide the selection of links in a sparse graphical model, while the parameters on the nodes and the edges are inferred from sequence data. We show, on 10 mutational scans, that our pipeline exhibits performances comparable to state-of-the-art deep networks trained on many more data, while requiring much less parameters and being hence more interpretable. In particular, the identified interactions adapt to the wild-type protein and to the fitness or biochemical property experimentally measured, mostly focus on key functional sites, and are not necessarily related to structural contacts. Therefore, our method is able to extract information relevant for one mutational experiment from homologous sequence data reflecting the multitude of structural and functional constraints acting on proteins throughout evolution.

Funder

Agence Nationale de la Recherche

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3