HiCImpute: A Bayesian hierarchical model for identifying structural zeros and enhancing single cell Hi-C data

Author:

Xie Qing,Han Chenggong,Jin VictorORCID,Lin ShiliORCID

Abstract

Single cell Hi-C techniques enable one to study cell to cell variability in chromatin interactions. However, single cell Hi-C (scHi-C) data suffer severely from sparsity, that is, the existence of excess zeros due to insufficient sequencing depth. Complicating the matter further is the fact that not all zeros are created equal: some are due to loci truly not interacting because of the underlying biological mechanism (structural zeros); others are indeed due to insufficient sequencing depth (sampling zeros or dropouts), especially for loci that interact infrequently. Differentiating between structural zeros and dropouts is important since correct inference would improve downstream analyses such as clustering and discovery of subtypes. Nevertheless, distinguishing between these two types of zeros has received little attention in the single cell Hi-C literature, where the issue of sparsity has been addressed mainly as a data quality improvement problem. To fill this gap, in this paper, we propose HiCImpute, a Bayesian hierarchical model that goes beyond data quality improvement by also identifying observed zeros that are in fact structural zeros. HiCImpute takes spatial dependencies of scHi-C 2D data structure into account while also borrowing information from similar single cells and bulk data, when such are available. Through an extensive set of analyses of synthetic and real data, we demonstrate the ability of HiCImpute for identifying structural zeros with high sensitivity, and for accurate imputation of dropout values. Downstream analyses using data improved from HiCImpute yielded much more accurate clustering of cell types compared to using observed data or data improved by several comparison methods. Most significantly, HiCImpute-improved data have led to the identification of subtypes within each of the excitatory neuronal cells of L4 and L5 in the prefrontal cortex.

Funder

National Institute of General Medical Sciences

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference35 articles.

1. Organization of the mitotic chromosome;N Naumova;Science,2013

2. Extensive heterogeneity and intrinsic variation in spatial genome organization;EH Finn;Cell,2019

3. Sci-Hi-C: a single-cell Hi-C method for mapping 3D genome organization in large number of single cells;V Ramani;Methods,2019

4. Robust single-cell Hi-C clustering by convolution-and random-walk–based imputation;J Zhou;Proceedings of the National Academy of Sciences,2019

5. Bayesian Estimation of Three-Dimensional Chromosomal Structure from Single-Cell Hi-C Data;M Rosenthal;Journal of Computational Biology,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single-cell omics: experimental workflow, data analyses and applications;Science China Life Sciences;2024-07-23

2. scHi-CNN: a Computational Method for Statistically Significant Single-cell Hi-C Chromatin Interactions with Nearest Neighbors;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

3. Bayesian methods in integrative structure modeling;Biological Chemistry;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3