Bridging the gap between mechanistic biological models and machine learning surrogates

Author:

Gherman Ioana M.ORCID,Abdallah Zahraa S.,Pang Wei,Gorochowski Thomas E.,Grierson Claire S.,Marucci Lucia

Abstract

Mechanistic models have been used for centuries to describe complex interconnected processes, including biological ones. As the scope of these models has widened, so have their computational demands. This complexity can limit their suitability when running many simulations or when real-time results are required. Surrogate machine learning (ML) models can be used to approximate the behaviour of complex mechanistic models, and once built, their computational demands are several orders of magnitude lower. This paper provides an overview of the relevant literature, both from an applicability and a theoretical perspective. For the latter, the paper focuses on the design and training of the underlying ML models. Application-wise, we show how ML surrogates have been used to approximate different mechanistic models. We present a perspective on how these approaches can be applied to models representing biological processes with potential industrial applications (e.g., metabolism and whole-cell modelling) and show why surrogate ML models may hold the key to making the simulation of complex biological systems possible using a typical desktop computer.

Funder

Engineering and Physical Sciences Research Council

Biotechnology and Biological Sciences Research Council

Breaktrough Award

Royal Society

Alan Turing Institute

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference89 articles.

1. Digital twin: Enabling technologies, challenges and open research.;A Fuller;IEEE Access.,2020

2. A whole-cell computational model predicts phenotype from genotype;JR Karr;Cell,2012

3. Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation;DN Macklin;Science,2020

4. Massive computational acceleration by using neural networks to emulate mechanism-based biological models.;S Wang;Nat Commun,2019

5. Bridging finite element and machine learning modeling: stress prediction of arterial walls in atherosclerosis;A Madani;J Biomech Eng,2019

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3