Abstract
AbstractMulti-level, hybrid models and simulations are essential to enable predictions and hypothesis generation in systems biology research. However, the computational complexity of these models poses a bottleneck, limiting the applicability of methodologies relying on large number of simulations, such as the Optimization via Simulation (OvS) of complex biological processes. Meta-models based on approximate surrogate models simplify multi-level simulations, maintaining accuracy while reducing computational costs. Among Artificial Neural Networks (ANNs), Long Short-Term Memory (LSTM) networks are well suited to handle sequential data, which often characterizes biological simulations. This paper presents an LSTM-based surrogate modeling approach for multi-level simulations of complex biological processes. The approach accurately infers simulation evolution from any state. Validation relies on the simulation of Tumor Necrosis Factor (TNF) administration to a 3T3 mouse fibroblasts tumor spheroid based on PhysiBoSS 2.0, a hybrid agent-based multi-level modeling framework. Results show that the proposed LSTM meta-model is accurate and fast. In fact, it infers simulated behavior with an average relative error of 7.5%. Moreover, it is at least five orders of magnitude faster. Even considering the cost of training, this approach provides a faster, more accurate, and reusable surrogate of multi-scale simulations in computationally complex tasks, such as model-based OvS of biological processes.
Publisher
Cold Spring Harbor Laboratory