Fast and Accurate LSTM Meta-modeling of TNF-induced Tumor Resistance In Vitro

Author:

Abrate Marco P.ORCID,Smeriglio RiccardoORCID,Bardini RobertaORCID,Savino AlessandroORCID,Di Carlo StefanoORCID

Abstract

AbstractMulti-level, hybrid models and simulations are essential to enable predictions and hypothesis generation in systems biology research. However, the computational complexity of these models poses a bottleneck, limiting the applicability of methodologies relying on large number of simulations, such as the Optimization via Simulation (OvS) of complex biological processes. Meta-models based on approximate surrogate models simplify multi-level simulations, maintaining accuracy while reducing computational costs. Among Artificial Neural Networks (ANNs), Long Short-Term Memory (LSTM) networks are well suited to handle sequential data, which often characterizes biological simulations. This paper presents an LSTM-based surrogate modeling approach for multi-level simulations of complex biological processes. The approach accurately infers simulation evolution from any state. Validation relies on the simulation of Tumor Necrosis Factor (TNF) administration to a 3T3 mouse fibroblasts tumor spheroid based on PhysiBoSS 2.0, a hybrid agent-based multi-level modeling framework. Results show that the proposed LSTM meta-model is accurate and fast. In fact, it infers simulated behavior with an average relative error of 7.5%. Moreover, it is at least five orders of magnitude faster. Even considering the cost of training, this approach provides a faster, more accurate, and reusable surrogate of multi-scale simulations in computationally complex tasks, such as model-based OvS of biological processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3