Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques

Author:

Barboza Luis A.,Chou-Chen Shu-Wei,Vásquez Paola,García Yury E.ORCID,Calvo Juan G.,Hidalgo Hugo G.,Sanchez Fabio

Abstract

Dengue fever is a vector-borne disease affecting millions yearly, mostly in tropical and subtropical countries. Driven mainly by social and environmental factors, dengue incidence and geographical expansion have increased in recent decades. Therefore, understanding how climate variables drive dengue outbreaks is challenging and a problem of interest for decision-makers that could aid in improving surveillance and resource allocation. Here, we explore the effect of climate variables on relative dengue risk in 32 cantons of interest for public health authorities in Costa Rica. Relative dengue risk is forecast using a Generalized Additive Model for location, scale, and shape and a Random Forest approach. Models use a training period from 2000 to 2020 and predicted climatic variables obtained with a vector auto-regressive model. Results show reliable projections, and climate variables predictions allow for a prospective instead of a retrospective study.

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference40 articles.

1. Refining the global spatial limits of dengue virus transmission by evidence-based consensus;OJ Brady;PLOS Negl Trop Dis,2012

2. Global spread of dengue virus types: mapping the 70 year history;JP Messina;Trends Microbiol,2014

3. Dengue and dengue hemorrhagic fever;DJ Gubler;Clin Microbiol Rev,1998

4. World Health Organization. Global strategy for dengue prevention and control 2012-2020; 2012. Available from: https://apps.who.int/iris/bitstream/handle/10665/75303/9789241504034_eng.pdf.

5. Machine learning in epidemiology and health outcomes research;TL Wiemken;Annu Rev Public Health,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3