The Potential of Surveillance Data for Dengue Risk Mapping: An Evaluation of Different Approaches in Cuba

Author:

Baldoquín Rodríguez Waldemar1ORCID,Mirabal Mayelin2ORCID,Van der Stuyft Patrick3,Gómez Padrón Tania4,Fonseca Viviana4,Castillo Rosa María5,Monteagudo Díaz Sonia6,Baetens Jan M.7ORCID,De Baets Bernard7ORCID,Toledo Romaní Maria Eugenia1,Vanlerberghe Veerle8ORCID

Affiliation:

1. Epidemiology Department, “Pedro Kourí” Institute of Tropical Medicine, Havana 11400, Cuba

2. Unidad de Información y Biblioteca, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico

3. Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium

4. Centro Provincial de Higiene Epidemiología y Microbiología, Dirección Provincial de Salud, Santiago de Cuba 90100, Cuba

5. Unidad Provincial de Vigilancia y Lucha Antivectorial, Dirección Provincial de Salud, Santiago de Cuba 90100, Cuba

6. Centro Provincial de Higiene Epidemiología y Microbiología, Dirección Provincial de Salud, Cienfuegos 55100, Cuba

7. KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium

8. Public Health Department, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium

Abstract

To better guide dengue prevention and control efforts, the use of routinely collected data to develop risk maps is proposed. For this purpose, dengue experts identified indicators representative of entomological, epidemiological and demographic risks, hereafter called components, by using surveillance data aggregated at the level of Consejos Populares (CPs) in two municipalities of Cuba (Santiago de Cuba and Cienfuegos) in the period of 2010–2015. Two vulnerability models (one with equally weighted components and one with data-derived weights using Principal Component Analysis), and three incidence-based risk models were built to construct risk maps. The correlation between the two vulnerability models was high (tau > 0.89). The single-component and multicomponent incidence-based models were also highly correlated (tau ≥ 0.9). However, the agreement between the vulnerability- and the incidence-based risk maps was below 0.6 in the setting with a prolonged history of dengue transmission. This may suggest that an incidence-based approach does not fully reflect the complexity of vulnerability for future transmission. The small difference between single- and multicomponent incidence maps indicates that in a setting with a narrow availability of data, simpler models can be used. Nevertheless, the generalized linear mixed multicomponent model provides information of covariate-adjusted and spatially smoothed relative risks of disease transmission, which can be important for the prospective evaluation of an intervention strategy. In conclusion, caution is needed when interpreting risk maps, as the results vary depending on the importance given to the components involved in disease transmission. The multicomponent vulnerability mapping needs to be prospectively validated based on an intervention trial targeting high-risk areas.

Publisher

MDPI AG

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Immunology and Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3