Ku80 is involved in telomere maintenance but dispensable for genomic stability in Leishmania mexicana

Author:

Poláková Ester,Albanaz Amanda T. S.,Zakharova Alexandra,Novozhilova Tatiana S.,Gerasimov Evgeny S.,Yurchenko VyacheslavORCID

Abstract

Background Telomeres are indispensable for genome stability maintenance. They are maintained by the telomere-associated protein complex, which include Ku proteins and a telomerase among others. Here, we investigated a role of Ku80 in Leishmania mexicana. Leishmania is a genus of parasitic protists of the family Trypanosomatidae causing a vector-born disease called leishmaniasis. Methodology/Principal findings We used the previously established CRISPR/Cas9 system to mediate ablation of Ku80- and Ku70-encoding genes in L. mexicana. Complete knock-outs of both genes were confirmed by Southern blotting, whole-genome Illumina sequencing, and RT-qPCR. Resulting telomeric phenotypes were subsequently investigated using Southern blotting detection of terminal restriction fragments. The genome integrity in the Ku80- deficient cells was further investigated by whole-genome sequencing. Our work revealed that telomeres in the ΔKu80 L. mexicana are elongated compared to those of the wild type. This is a surprising finding considering that in another model trypanosomatid, Trypanosoma brucei, they are shortened upon ablation of the same gene. A telomere elongation phenotype has been documented in other species and associated with a presence of telomerase-independent alternative telomere lengthening pathway. Our results also showed that Ku80 appears to be not involved in genome stability maintenance in L. mexicana. Conclusion/Significance Ablation of the Ku proteins in L. mexicana triggers telomere elongation, but does not have an adverse impact on genome integrity.

Funder

European Regional Funds

Ostravská Univerzita v Ostravě

Moravskoslezský kraj research initiative

City of Ostrava

Russian Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference70 articles.

1. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses;AY Kostygov;Open Biol,2021

2. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution;DA Maslov;Parasitology,2019

3. The Leishmaniases: Old Neglected Tropical Diseases

4. WHO. Leishmaniasis. 2020 (Cited November 19 2021). Available from: https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis

5. Kinetoplastids: related protozoan pathogens, different diseases;K Stuart;J Clin Invest,2008

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3