Integrated neural dynamics of sensorimotor decisions and actions

Author:

Thura DavidORCID,Cabana Jean-François,Feghaly Albert,Cisek PaulORCID

Abstract

Recent theoretical models suggest that deciding about actions and executing them are not implemented by completely distinct neural mechanisms but are instead two modes of an integrated dynamical system. Here, we investigate this proposal by examining how neural activity unfolds during a dynamic decision-making task within the high-dimensional space defined by the activity of cells in monkey dorsal premotor (PMd), primary motor (M1), and dorsolateral prefrontal cortex (dlPFC) as well as the external and internal segments of the globus pallidus (GPe, GPi). Dimensionality reduction shows that the four strongest components of neural activity are functionally interpretable, reflecting a state transition between deliberation and commitment, the transformation of sensory evidence into a choice, and the baseline and slope of the rising urgency to decide. Analysis of the contribution of each population to these components shows meaningful differences between regions but no distinct clusters within each region, consistent with an integrated dynamical system. During deliberation, cortical activity unfolds on a two-dimensional “decision manifold” defined by sensory evidence and urgency and falls off this manifold at the moment of commitment into a choice-dependent trajectory leading to movement initiation. The structure of the manifold varies between regions: In PMd, it is curved; in M1, it is nearly perfectly flat; and in dlPFC, it is almost entirely confined to the sensory evidence dimension. In contrast, pallidal activity during deliberation is primarily defined by urgency. We suggest that these findings reveal the distinct functional contributions of different brain regions to an integrated dynamical system governing action selection and execution.

Funder

Canadian Institutes of Health Research

Canadian Foundation for Innovation

Fonds de Recherche du Québec - Santé

EJLB Foundation

Fondation Fyssen

Groupe de Recherche sur le Systeme Nerveux Central

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference151 articles.

1. Neural mechanisms for interacting with a world full of action choices;P Cisek;AnnuRev Neurosci,2010

2. The life of behavior;A Gomez-Marin;Neuron,2019

3. Reaching decisions during ongoing movements;J Michalski;J Neurophysiol,2020

4. Body dynamics of gait affect value-based decisions;E Grießbach;Sci Rep,2021

5. Cortical mechanisms of action selection: the affordance competition hypothesis;P. Cisek;Phil Trans R Soc B,2007

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A computational mechanism of cue-stimulus integration for pain in the brain;Science Advances;2024-09-13

2. Figure Credits;Concepts at the Interface;2024-09-05

3. Concluding Thoughts;Concepts at the Interface;2024-09-05

4. Metacognition;Concepts at the Interface;2024-09-05

5. Representational Structure;Concepts at the Interface;2024-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3