Abstract
High-throughput, spatially resolved gene expression techniques are poised to be transformative across biology by overcoming a central limitation in single-cell biology: the lack of information on relationships that organize the cells into the functional groupings characteristic of tissues in complex multicellular organisms. Spatial expression is particularly interesting in the mammalian brain, which has a highly defined structure, strong spatial constraint in its organization, and detailed multimodal phenotypes for cells and ensembles of cells that can be linked to mesoscale properties such as projection patterns, and from there, to circuits generating behavior. However, as with any type of expression data, cross-dataset benchmarking of spatial data is a crucial first step. Here, we assess the replicability, with reference to canonical brain subdivisions, between the Allen Institute’s in situ hybridization data from the adult mouse brain (Allen Brain Atlas (ABA)) and a similar dataset collected using spatial transcriptomics (ST). With the advent of tractable spatial techniques, for the first time, we are able to benchmark the Allen Institute’s whole-brain, whole-transcriptome spatial expression dataset with a second independent dataset that similarly spans the whole brain and transcriptome. We use regularized linear regression (LASSO), linear regression, and correlation-based feature selection in a supervised learning framework to classify expression samples relative to their assayed location. We show that Allen Reference Atlas labels are classifiable using transcription in both data sets, but that performance is higher in the ABA than in ST. Furthermore, models trained in one dataset and tested in the opposite dataset do not reproduce classification performance bidirectionally. While an identifying expression profile can be found for a given brain area, it does not generalize to the opposite dataset. In general, we found that canonical brain area labels are classifiable in gene expression space within dataset and that our observed performance is not merely reflecting physical distance in the brain. However, we also show that cross-platform classification is not robust. Emerging spatial datasets from the mouse brain will allow further characterization of cross-dataset replicability ultimately providing a valuable reference set for understanding the cell biology of the brain.
Funder
Edward and Martha Gerry Fellowship
National Institutes of Health
Swedish Research Council
Brain Research Foundation
Intelligence Advanced Research Projects Activity
Paul G. Allen Family Foundation
Chan Zuckerberg Initiative
Robert Lourie
Publisher
Public Library of Science (PLoS)
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience
Reference54 articles.
1. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics;PL Ståhl;Science,2016
2. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution;SG Rodriques;Science,2019
3. High-definition spatial transcriptomics for in situ tissue profiling.;S Vickovic;Nat Methods,2019
4. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2;RR Stickels;Nat Biotechnol
5. Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration;M Asp;BioEssays
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献