Beyond high hopes: A scoping review of the 2019–2021 scientific discourse on machine learning in medical imaging

Author:

Nittas VasileiosORCID,Daniore Paola,Landers Constantin,Gille Felix,Amann JuliaORCID,Hubbs Shannon,Puhan Milo Alan,Vayena EffyORCID,Blasimme AlessandroORCID

Abstract

Machine learning has become a key driver of the digital health revolution. That comes with a fair share of high hopes and hype. We conducted a scoping review on machine learning in medical imaging, providing a comprehensive outlook of the field’s potential, limitations, and future directions. Most reported strengths and promises included: improved (a) analytic power, (b) efficiency (c) decision making, and (d) equity. Most reported challenges included: (a) structural barriers and imaging heterogeneity, (b) scarcity of well-annotated, representative and interconnected imaging datasets (c) validity and performance limitations, including bias and equity issues, and (d) the still missing clinical integration. The boundaries between strengths and challenges, with cross-cutting ethical and regulatory implications, remain blurred. The literature emphasizes explainability and trustworthiness, with a largely missing discussion about the specific technical and regulatory challenges surrounding these concepts. Future trends are expected to shift towards multi-source models, combining imaging with an array of other data, in a more open access, and explainable manner.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Public Library of Science (PLoS)

Reference124 articles.

1. The Lancet and Financial Times Commission on governing health futures 2030: growing up in a digital world;I Kickbusch;Lancet,2021

2. Artificial Intelligence in Health Care Will the Value Match the Hype?;E Emanuel;N Engl J Med,2003

3. Artificial Intelligence and the Medical Radiation Profession: How Our Advocacy Must Inform Future Practice;A Murphy;J Med Imaging Radiat Sci,2019

4. Artificial Intelligence and Machine Learning Applied at the Point of Care;Z Angehrn;Front Pharmacol,2020

5. Traps, pitfalls and misconceptions of machine learning applied to scientific disciplines;D Del Vento;ACM Int Conf Proceeding Ser,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3