Optimization of carotenoid extraction of a halophilic microalgae

Author:

Gan Shanling,Liang Shengjia,Zou Qiman,Shang ChanghuaORCID

Abstract

Dunaliella parva can produce abundant carotenoids under certain conditions. This paper optimized the extraction efficiency of carotenoids from D. parva. Different organic solvents were examined to determine the most suitable solvent for the extraction. After the determination of the solvent (dimethylsulfoxide, DMSO), the extraction conditions including time, temperature, and volume were then optimized to maximize the extraction efficiency of carotenoids from D. parva using response surface methodology. DMSO was identified as the most suitable solvent. The optimal extraction conditions were as follows: temperature of 57.2°C, time of 11.35 min, the volume of 410 μl, and the optimal extraction efficiency reached 0.517‰. The results showed that the optimal extraction efficiency (0.517‰) improved 31.69% in comparison to the initial extraction efficiency (0.3926‰). In addition, The optimal levels of three influence factors (temperature of 57.2°C, time of 11.35 min, volume of 410 μl) decreased compared with the initial levels (temperature of 60°C, time of 20 min, volume of 1000 μl). In this paper, Central Composite Design (CCD) was used to optimize the extraction efficiency of carotenoids from D. parva, which would lay the groundwork for the extraction and utilization of carotenoids from D. parva in the future.

Funder

National Natural Science Foundation of China

Guangxi Key Research and Development Program

Research Funds of the Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University

Research Funds of Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3