New deep learning method for efficient extraction of small water from remote sensing images

Author:

Luo YuanjiangORCID,Feng Ao,Li Hongxiang,Li Danyang,Wu Xuan,Liao Jie,Zhang Chengwu,Zheng Xingqiang,Pu HaiboORCID

Abstract

Extracting water bodies from remote sensing images is important in many fields, such as in water resources information acquisition and analysis. Conventional methods of water body extraction enhance the differences between water bodies and other interfering water bodies to improve the accuracy of water body boundary extraction. Multiple methods must be used alternately to extract water body boundaries more accurately. Water body extraction methods combined with neural networks struggle to improve the extraction accuracy of fine water bodies while ensuring an overall extraction effect. In this study, false color processing and a generative adversarial network (GAN) were added to reconstruct remote sensing images and enhance the features of tiny water bodies. In addition, a multi-scale input strategy was designed to reduce the training cost. We input the processed data into a new water body extraction method based on strip pooling for remote sensing images, which is an improvement of DeepLabv3+. Strip pooling was introduced in the DeepLabv3+ network to better extract water bodies with a discrete distribution at long distances using different strip kernels. The experiments and tests show that the proposed method can improve the accuracy of water body extraction and is effective in fine water body extraction. Compared with seven other traditional remote sensing water body extraction methods and deep learning semantic segmentation methods, the prediction accuracy of the proposed method reaches 94.72%. In summary, the proposed method performs water body extraction better than existing methods.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3