Investigation of sniffer technique on remote measurement of ship emissions: A case study in Shanghai, China

Author:

Li Xiaobo,Li KeORCID,Ji Qingpeng,Shen Feixiang,Wu Qiang,Chen Qiuyan,Luo Liangjing,Bian Xijia,Chen Wei,Lou Diming

Abstract

Shipping emissions have aroused wide concern in the world. In order to promote the implementation of emission regulations, this study develop a ship based sniffing technique to perform remote measurement of the SO2, NOx and CO2 from ships entering and leaving Shanghai port at the open sea. The ship emission prediction model, Smoke diffusion model and source identification model were developed to automatically analyze the emission data and screen the object ship source based on Automatic Identification System (AIS) system. The fueling documents of the detected ship were obtained from maritime sector and the results precision of the sniffer technique was evaluated by comparing the measured Fuel sulfur content (FSC) with actual value deduced from fueling documents. The influences of wind speed and direction, object ship parameters and monitoring distance on the identification of object ship and accuracy of the calculated FSC were thoroughly investigated and the corresponding correction factors under different conditions were deduced. The modified emission factor ratio of CO2 to NOx were proposed in order to improve the accuracy. It is demonstrated that with wind speed higher than 2 m/s and test distance shorter than 400m, the sniffer technique exhibit high efficiency and accuracy for the remote emissions measurement of ship upwind with detection rate higher than 90% and test error of FSC below 15%. To reduce the influence of the wind direction, at least two sniffer systems were required to guarantee that at least one station is in the downwind of the ship lane. Based on the results and discussion, a novel sniffer monitoring system with two buoy based sniffing stations placed close to each side of the ship lane far off shore was proposed to realize the remote monitoring of ship emissions.

Funder

National Engineering Laboratory for Marine and Ocean Engineering Power System

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference21 articles.

1. Emissions from international shipping;V. Eyring;Journal of Geophysical Research,2005

2. Transport impacts on atmosphere and climate: Shipping;V. Eyring;Atmospheric Environment,2010

3. Seyler, A., et al. Impact of sulfur content regulations of shipping fuel on coastal air quality. in Egu General Assembly Conference. 2016.

4. Understanding the Components of theWholesale Diesel Fuel Price Structure (0.05% S);M. BROOKE;SA Fruit Journal,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3