Abstract
During the COVID-19 pandemic, analyses on global data have not reached unanimous consensus on whether warmer and humid weather curbs the spread of the SARS-CoV-2 virus. We conjectured that this lack of consensus is due to the discrepancy between global environmental data such as temperature and humidity being collected outdoors, while most infections have been reported to occur indoors, where conditions can be different. Thus, we have methodologically investigated the effect of temperature and relative humidity on the spread of expired respiratory droplets from the mouth, which are assumed to be the main cause of most short-range infections. Calculating the trajectory of individual droplets using an experimentally validated evaporation model, the final height and distance of the evaporated droplets is obtained, and then correlated with global COVID-19 spread. Increase in indoor humidity is associated with reduction in COVID-19 spread, while temperature has no statistically significant effect.
Funder
Seoul National University Research Grant
National Research Foundation of Korea
Publisher
Public Library of Science (PLoS)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献