Data-driven models for atmospheric air temperature forecasting at a continental climate region

Author:

Alomar Mohamed KhalidORCID,Khaleel Faidhalrahman,Aljumaily Mustafa M.,Masood Adil,Razali Siti Fatin Mohd,AlSaadi Mohammed Abdulhakim,Al-Ansari NadhirORCID,Hameed Mohammed MajeedORCID

Abstract

Atmospheric air temperature is the most crucial metrological parameter. Despite its influence on multiple fields such as hydrology, the environment, irrigation, and agriculture, this parameter describes climate change and global warming quite well. Thus, accurate and timely air temperature forecasting is essential because it provides more important information that can be relied on for future planning. In this study, four Data-Driven Approaches, Support Vector Regression (SVR), Regression Tree (RT), Quantile Regression Tree (QRT), ARIMA, Random Forest (RF), and Gradient Boosting Regression (GBR), have been applied to forecast short-, and mid-term air temperature (daily, and weekly) over North America under continental climatic conditions. The time-series data is relatively long (2000 to 2021), 70% of the data are used for model calibration (2000 to 2015), and the rest are used for validation. The autocorrelation and partial autocorrelation functions have been used to select the best input combination for the forecasting models. The quality of predicting models is evaluated using several statistical measures and graphical comparisons. For daily scale, the SVR has generated more accurate estimates than other models, Root Mean Square Error (RMSE = 3.592°C), Correlation Coefficient (R = 0.964), Mean Absolute Error (MAE = 2.745°C), and Thiels’ U-statistics (U = 0.127). Besides, the study found that both RT and SVR performed very well in predicting weekly temperature. This study discovered that the duration of the employed data and its dispersion and volatility from month to month substantially influence the predictive models’ efficacy. Furthermore, the second scenario is conducted using the randomization method to divide the data into training and testing phases. The study found the performance of the models in the second scenario to be much better than the first one, indicating that climate change affects the temperature pattern of the studied station. The findings offered technical support for generating high-resolution daily and weekly temperature forecasts using Data-Driven Methodologies.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference59 articles.

1. US. Health in International Perspective: Shorter Lives, Poorer Health;S. H. Woolf;U.S. Heal. Int. Perspect. Shorter Lives, Poorer Heal,2013

2. On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers;R. J. Vidmar;IEEE Trans. Plasma Sci.,1990

3. Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey;Ö. Altan Dombaycı;Renew. Energy,2009

4. Performance of statistical and machine learning ensembles for daily temperature downscaling;X. Li;Theor. Appl. Climatol.,2020

5. Temperature Prediction Using the Missing Data Refinement Model Based on a Long Short-Term Memory Neural Network;I. Park;Atmosphere,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3