Improving PM2.5 prediction in New Delhi using a hybrid extreme learning machine coupled with snake optimization algorithm

Author:

Masood Adil,Hameed Mohammed Majeed,Srivastava Aman,Pham Quoc Bao,Ahmad Kafeel,Razali Siti Fatin Mohd,Baowidan Souad Ahmad

Abstract

AbstractFine particulate matter (PM2.5) is a significant air pollutant that drives the most chronic health problems and premature mortality in big metropolitans such as Delhi. In such a context, accurate prediction of PM2.5 concentration is critical for raising public awareness, allowing sensitive populations to plan ahead, and providing governments with information for public health alerts. This study applies a novel hybridization of extreme learning machine (ELM) with a snake optimization algorithm called the ELM-SO model to forecast PM2.5 concentrations. The model has been developed on air quality inputs and meteorological parameters. Furthermore, the ELM-SO hybrid model is compared with individual machine learning models, such as Support Vector Regression (SVR), Random Forest (RF), Extreme Learning Machines (ELM), Gradient Boosting Regressor (GBR), XGBoost, and a deep learning model known as Long Short-Term Memory networks (LSTM), in forecasting PM2.5 concentrations. The study results suggested that ELM-SO exhibited the highest level of predictive performance among the five models, with a testing value of squared correlation coefficient (R2) of 0.928, and root mean square error of 30.325 µg/m3. The study's findings suggest that the ELM-SO technique is a valuable tool for accurately forecasting PM2.5 concentrations and could help advance the field of air quality forecasting. By developing state-of-the-art air pollution prediction models that incorporate ELM-SO, it may be possible to understand better and anticipate the effects of air pollution on human health and the environment.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3