Assessing optimal nitrate/ ammonium- ratios in baby-leaf lettuce to enhance the heat stress tolerance under elevated CO2 conditions

Author:

Collado-González JacintaORCID,Piñero María Carmen,Otalora Ginés,López-Marín JosefaORCID,del Amor Francisco M.ORCID

Abstract

In recent years, the interest on baby-leaf lettuce has grown steadily, because it is richer in bioactive compounds than other traditional vegetables. However, the quality of lettuce is being increasingly affected by climate change. It is very rare for a climatic effect to occur in isolation. Even then, a large body of work has only focused on the effect of isolated heat stress, fertilization, and elevated CO2, on morphological, physiological and biochemical parameters. Thus, very few works have focused on how the combination of several of these factors can affect these parameters. For first time, the present work studied the combined effect derived from the application of two different levels of CO2 (400 and 1000 ppm of CO2), four different NO3-/ NH4+ ratios (100/0 (T-I), 100/0 before the short-term heat stress and finally without NO3- (T-II), 80/20 (T-III) and 50/50 (T-IV)), and a short-term heat stress (25 and 43°C), on some physiological and quality parameters (dry biomass, photosynthetic parameters, pigments content, lipid peroxidation and total soluble proteins content) of baby-leaf lettuce cv Derbi. Additionally, a comparison of that combined effect of all these parameters between inner and outer leaves was also performed. The results obtained indicated that the interaction between the nutrient solution containing a 50/50 NO3-/ NH4+ ratio and a high concentration of CO2 (1000 ppm) improved the biomass, photosynthesis, intercellular/external CO2 concentration ratio (ci/ca), stomatal conductance (gs), evapotranspiration (E) and lipid peroxidation, and protein content in this baby-leaf lettuce. The results obtained in this work lead us to conclude that this existing interaction between the NO3-/ NH4+ ratio and the elevated CO2 concentration may be considered as a new strategy for making baby-leaf lettuce more resistant to heat stress, in other words, stronger against the ever more frequent heat waves.

Funder

European Regional Development Fund

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference69 articles.

1. Nitrate concentration and nitrate/ammonium ratio on lettuce grown in hydroponics in Southern Amazon;DdSL Wenceslau;African Journal of Agricultural Research,2021

2. Association between nutritional profiles of foods underlying Nutri-Score front-of-pack labels and mortality: EPIC cohort study in 10 European countries;M Deschasaux;bmj,2020

3. Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce;M-M Oh;Journal of Plant Physiology,2009

4. Interactive effects of elevated CO2 concentration and combined heat and drought stress on tomato photosynthesis;R Zhou;BMC Plant Biology,2020

5. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review;A Raza;Plants,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3