Ammonium Phytotoxicity and Tolerance: An Insight into Ammonium Nutrition to Improve Crop Productivity

Author:

Shilpha Jayabalan1ORCID,Song Jinnan2ORCID,Jeong Byoung Ryong123ORCID

Affiliation:

1. Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea

2. Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea

3. Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea

Abstract

Ammonium sensitivity is considered a globally stressful condition that affects overall crop productivity. The major toxic symptom associated with ammonium nutrition is growth retardation, which has been associated with a high energy cost for maintaining ion, pH, and hormone homeostasis and, eventually, the NH3/NH4+ level in plant tissues. While certain species/genotypes exhibit extreme sensitivity to ammonium, other species/genotypes prefer ammonium to nitrate as a form of nitrogen. Some of the key tolerance mechanisms used by the plant to deal with NH4+ toxicity include an enhanced activity of an alternative oxidase pathway in mitochondria, greater NH4+ assimilation plus the retention of the minimum level of NH4+ in leaves, and/or poor response to extrinsic acidification or pH drop. Except for toxicity, ammonium can be considered as an energy-efficient nutrition in comparison to nitrate since it is already in a reduced form for use in amino acid metabolism. Through effective manipulation of the NH4+/NO3 − ratio, ammonium nutrition can be used to increase productivity, quality, and resistance to various biotic and abiotic stresses of crops. This review highlights recent advancements in ammonium toxicity and tolerance mechanisms, possible strategies to improve ammonium tolerance, and omics-based understanding of nitrogen use efficiency (NUE) in plants.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference158 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3