Plastics are a new threat to Palau’s coral reefs

Author:

Béraud EricORCID,Bednarz Vanessa,Otto Ikelau,Golbuu Yimnang,Ferrier-Pagès Christine

Abstract

Plastic pollution of the oceans has long been an ongoing and growing problem. Single-use plastic (plastic bags and microbeads) is responsible for most of this pollution. In recent years, studies have highlighted the importance of the size of plastic particles, and the impact of this pollution source on the environment. We determined the concentration of small marine plastics in seawater, sediments and beach sand around a pristine reef area (Republic of Palau) using very simple tools (plankton net, sieves, organic matter degradation, density separation, Nile red fluorochrome). In this study, we succeeded in detecting microplastic (MPs) particles and microplastic fibers, but also nanoplastic (NPs). These three types of particles were found in all samples with a large heterogeneity, from 0.01 to 0.09 particles L-1 and 0.17 to 32.13 particles g-1 DW for MPs in seawater, sediments and sand, respectively. Even when NPs were identified, the amounts of NPs were underestimated and varied from 0.09 to 0.43 particles L-1 in seawater and from 1.08 to 71.02 particles g-1 DW in sediment and sand, respectively. These variations could be attributed to the environmental characteristics of the different sites. This study shows that plastic pollution must be considered in environmental studies even in the most pristine locations. It also shows that NPs pollution is related to the amount of MPs found at the sites. To understand the effects of this plastic pollution, it is necessary that the next toxicological studies take into account the effects of this fraction that makes up the NPs.

Funder

Prince Albert II of Monaco Foundation

Government of the Principality of Monaco and the Palau International Coral Reef Center

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3