A flashing light may not be that flashy: A systematic review on critical fusion frequencies

Author:

Lafitte AlixORCID,Sordello Romain,Legrand Marc,Nicolas Virginie,Obein Gaël,Reyjol Yorick

Abstract

Background Light pollution could represent one of the main drivers behind the current biodiversity erosion. While the effects of many light components on biodiversity have already been studied, the influence of flicker remains poorly understood. The determination of the threshold frequency at which a flickering light is perceived as continuous by a species, usually called the Critical Fusion Frequency (CFF), could thus help further identify the impacts of artificial lighting on animals. Objective This review aimed at answering the following questions: what is the distribution of CFF between species? Are there differences in how flicker is perceived between taxonomic classes? Which species are more at risk of being impacted by artificial lighting flicker? Methods Citations were extracted from three literature databases and were then screened successively on their titles, abstracts and full-texts. Included studies were critically appraised to assess their validity. All relevant data were extracted and analysed to determine the distribution of CFF in the animal kingdom and the influence of experimental designs and species traits on CFF. Results At first, 4881 citations were found. Screening and critical appraisal provided 200 CFF values for 156 species. Reported values of CFF varied from a maximum of between 300 Hz and 500 Hz for the beetle Melanophila acuminata D. to a mean of 0.57 (± 0.08) Hz for the snail Lissachatina fulica B. Insects and birds had higher CFF than all other studied taxa. Irrespective of taxon, nocturnal species had lower CFF than diurnal and crepuscular ones. Conclusions We identified nine crepuscular and nocturnal species that could be impacted by the potential adverse effects of anthropogenic light flicker. We emphasize that there remains a huge gap in our knowledge of flicker perception by animals, which could potentially be hampering our understanding of its impacts on biodiversity, especially in key taxa like bats, nocturnal birds and insects.

Funder

AFE

ACE

Citeos

PatriNat (French Office for Biodiversity (OFB) – French National Museum of Natural History (MNHN) – French National Centre for Scientific Research

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference65 articles.

1. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Summary for policymakers of the IPBES global assessment report on biodiversity and ecosystem services. 2019. Available from: 10.5281/zenodo.3553579

2. International Union for Conservation of Nature. UICN Red List 2017–2020 Report. 2021. Available from: https://nc.iucnredlist.org/redlist/resources/files/1630480997-IUCN_RED_LIST_QUADRENNIAL_REPORT_2017-2020.pdf

3. First Estimation of Global Trends in Nocturnal Power Emissions Reveals Acceleration of Light Pollution;A Sánchez de Miguel;Remote Sensing,2021

4. Light pollution as a biodiversity threat;F Hölker;Trends Ecol Evol,2010

5. 11 Pressing Research Questions on How Light Pollution Affects Biodiversity;F Hölker;Front Ecol Evol,2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3