Transcriptome analysis reveals regulation mechanism of methyl jasmonate-induced terpenes biosynthesis in Curcuma wenyujin

Author:

Wei Qiuhui,Lan Kaer,Liu Yuyang,Chen Rong,Hu Tianyuan,Zhao Shujuan,Yin Xiaopu,Xie Tian

Abstract

Curcuma wenyujin is the source plant of three traditional Chinese medicines, which have been widely used in clinical treatment over 1000 years. The content of terpenes, the major medicinal active ingredients, is relatively low in this plant. Studies have shown that MeJA can promote terpenes biosynthesis in plants. However, the mechanism underlying the effect of MeJA in C. wenyujin remains unclear. In this work, the transcriptome of C. wenyujin leaves with MeJA treatment was analyzed to elucidate the regulation mechanism of MeJA-mediated terpene biosynthesis. Based on the RNA-seq data, 7,246 unigenes were differentially expressed with MeJA treatment. Expression pattern clustering of DEGs revealed that unigenes, related to JA biosynthesis and signal transduction, responded to exogenous MeJA stimulation on the early stage and maintained throughout the process. Subsequently, unigenes related to terpene biosynthesis pathway showed a significant up-regulation with 6 h treatment. The analysis results suggested that MeJA induced the expression of JA biosynthesis genes (such as LOXs, AOSs, AOCs, OPRs, and MFPs) and JA signal transduction core genes (JAZs and MYCs) to activate JA signaling pathway. Meanwhile, downstream JA-responsive genes presented up-regulated expression levels such as AACT, HMGSs, HMGRs, DXSs, DXRs, MCTs, HDSs, and HDRs, thus promoting terpenes biosynthesis. The transcriptional expressions of these genes were validated by qRT-PCR. In addition, six CwTPS genes in response to MeJA were identified. With MeJA treatment, the expression levels of CwTPSs were increased as well as those of the transcription factors MYB, NAC, bZIP, WRKY, AP2/ERF, and HLH. These TFs might potentially regulate terpenes biosynthesis. These results provide insights for regulation mechanism of terpenes biosynthesis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3