Abstract
Background
Sediment scour at downstream of hydraulic structures is one of the main reasons threatening its stability. Several soil properties and initial input data have been studied to investigate its influence on scour hole geometry by both physical and numerical models. However, parameters of resistance affecting sedimentation and erosion phenomena have not been carried out in the literature. Besides, the auxiliary-like wing walls prevalently used in many real applications have been rarely addressed for their effect on morphological change.
Results
In this study, a 3D Computational Fluid Dynamics model is utilized to calibrate the hydraulic characteristics of steady flow going through the culvert by comparison with experimental data, showing good agreement between water depth, velocity, and pressure profiles at the bottom of the boxed culvert. The results show that a grid cell of 0.015 m gave minimum NRMSE and MAE values in test cases. Another approach is numerical testing sediment scour at a meander flume outlet with a variety of roughness/d50 ratio (cs) and diversion wall types. The findings include the following: cs = 2.5 indicates the close agreement between the numerical and analytical results of maximum scour depth after the culvert; the influence of four types of wing wall on the geometrical deformation including erosion at the concave bank and deposition at the convex bank of the meander flume outlet; and two short headwalls represent the best solution that accounts for small morphological changes.
Conclusions
The influence of the roughness parameter of soil material and headwall types on sediment scour at the meander exit channel of hydraulic structure can be estimated by the numerical model.
Funder
Thuyloi University Foundation for Sciences and Technology
Publisher
Public Library of Science (PLoS)
Reference35 articles.
1. Erosion protection downstream of diversion tunnels concrete prisms–Design criteria based on a systematic physical model study;Soleyman Emami;Lab. Constr. Hydraul. Ec. Polytech. Fédérale Lausanne,2004
2. Effects of shape, inlet blockage and wing walls on local scour at the outlet of non-submerged culverts: undermining of the embankment;Á. Galán;Environ. Earth Sci.,2020
3. Culvert Slope and Shape Effects on Outlet Scour.;S. R. Abt;Transp. Res. Rec.,1985
4. Headwall Influence on Scour at Culvert Outlets. Journal of Hydraulic Engineering;S. R.;Hydraul. Eng.,1983
5. Unified Culvert Scour Determination;C. Mendoza;Hydraul. Eng.,1984
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献