Numerical Investigation of Scour Downstream of Diversion Barrage for Different Stilling Basins at Flood Discharge

Author:

Zaffar Muhammad Waqas1,Hassan Ishtiaq1ORCID,Latif Umair2,Jahan Shah34,Ullah Zeeshan4ORCID

Affiliation:

1. Department of Civil Engineering, Capital University of Science and Technology (CUST), Expressway, Kahuta Road Zone-V Sihala, Islamabad Capital Territory, Islamabad 44000, Pakistan

2. Communication and Work Department (C&W), Government of Punjab, Lahore 54000, Pakistan

3. Professional Engineer Construction Planning and Costing at DASU Hydropower Project, Kohistan 20100, Pakistan

4. NUST Institute of Civil Engineering (NICE), Department of Construction Engineering and Management (CE&M), National University of Science and Technology (NUST), Islamabad 44000, Pakistan

Abstract

The hydraulic performance of stilling basins is affected by their size and geometry, which can be predicted by local scour. In 2008, based on a rigid bed study, the stilling basin of Taunsa barrage was remodeled, in which the old friction and baffle blocks were replaced with chute blocks and end sills. However, the study did not consider the effects of the remodeled basin on the erodible bed and only investigated hydraulic jumps. Therefore, this study developed FLOW-3D scour models for a designed flow of 24.28 m3/s/m to investigate the flow field and local scouring downstream of old and remodeled basins. The results showed that as compared to Large Eddy Simulation (LES) and Standard K-ε models, the Renormalization Group (RNG-K-ε) model predicted the scour profiles with better accuracy, for which the coefficient of determination (R2) reached 0.736, 0.823, and 0.747 for bays 33, 34, and 55, respectively. Downstream of the remodeled basin, the net change in sediment bed was 88%, 91%, and 95% in the LES, Standard, and RNG-K-ε models, respectively. However, downstream of the old basin, the net change in sediment bed reached 51%. Conclusively, based on the results, the study suggests investigating scour downstream of Taunsa Barrage using other discharges and sediment transport rate equations.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3