The Genomic landscape of short tandem repeats across multiple ancestries

Author:

Vijayaraghavan PrashanthORCID,Batalov Sergey,Ding Yan,Sanford Erica,Kingsmore Stephen F.,Dimmock David,Hobbs Charlotte,Bainbridge Matthew

Abstract

Short Tandem Repeats (STRs) have been found to play a role in a myriad of complex traits and genetic diseases. We examined the variability in the lengths of over 850,000 STR loci in 996 children with suspected genetic disorders and 1,178 parents across six separate ancestral groups: Africans, Europeans, East Asians, Admixed Americans, Non-admixed Americans, and Pacific Islanders. For each STR locus we compared allele length between and within each ancestry group. In relation to Europeans, admixed Americans had the most similar STR lengths with only 623 positions either significantly expanded or contracted, while the divergence was highest in Africans, with 4,933 chromosomal positions contracted or expanded. We also examined probands to identify STR expansions at known pathogenic loci. The genes TCF4, AR, and DMPK showed significant expansions with lengths 250% greater than their various average allele lengths in 49, 162, and 11 individuals respectively. All 49 individuals containing an expansion in TCF4 and six individuals containing an expansion in DMPK presented with allele lengths longer than the known pathogenic length for these genes. Next, we identified individuals with significant expansions in highly conserved loci across all ancestries. Eighty loci in conserved regions met criteria for divergence. Two of these individuals were found to have exonic STR expansions: one in ZBTB4 and the other in SLC9A7, which is associated with X-linked mental retardation. Finally, we used parent-child trios to detect and analyze de novo mutations. In total, we observed 3,219 de novo expansions, where proband allele lengths are greater than twice the longest parental allele length. This work helps lay the foundation for understanding STR lengths genome-wide across ancestries and may help identify new disease genes and novel mechanisms of pathogenicity in known disease genes.

Funder

National Institutes for Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3