Abstract
Aberration of PI3K signaling pathway has been confirmed to be associated with several hematological malignancies including acute myeloid leukemia (AML). FD268, a pyridinesulfonamide derivative characterized by the conjugation of 7-azaindole group, is a newly identified PI3K inhibitor showing high potent enzyme activity at nanomole concentration. In this study, we demonstrated that FD268 dose-dependently inhibits survival of AML cells with the efficacy superior to that of PI-103 (pan-PI3K inhibitor) and CAL-101 (selective PI3Kδ inhibitor) in the tested HL-60, MOLM-16, Mv-4-11, EOL-1 and KG-1 cell lines. Further mechanistic studies focused on HL-60 revealed that FD268 significantly inhibits the PI3K/Akt/mTOR signaling pathway, promotes the activation of pro-apoptotic protein Bad and downregulates the expression of anti-apoptotic protein Mcl-1, thus suppressing the cell proliferation and inducing caspase-3-dependent apoptosis. The bioinformatics analysis of the transcriptome sequencing data also indicated a potential involvement of the PI3K/Akt/mTOR pathway. These studies indicated that FD268 possesses high potent activity toward AML cells via inhibition of PI3K/Akt/mTOR signaling pathway, which sheds some light on the pyridinesulfonamide scaffold for further optimization and investigation.
Funder
National Key Technologies R&D Program of China
Commission for Science and Technology of Shanghai Municipality
Fudan-SIMM Joint Research Program
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献