A clustering metaheuristic for large orienteering problems

Author:

Elzein Almiqdad,Di Caro Gianni A.ORCID

Abstract

The Orienteering Problem is a routing problem that commonly appears in mapping, transportation, distribution, and scheduling scenarios. The Orienteering Problem is a challenging NP-hard problem, such that obtaining optimal or near optimal solutions usually requires a significant amount of computation for large and even moderately large instances. As a result, existing algorithms cannot effectively be utilized for solving large Orienteering Problems in an online setting, which is often required in real-world applications where a plan has to be iteratively computed. For instance, a planner might need to adapt to changes in the scenario or in the environment (e.g., this is common in goods delivery, as well as in mobile robotic scenarios for coverage, monitoring, and surveillance). Motivated by these limitations, we propose a multi-stage clustering-based metaheuristic for tackling large Orienteering Problems in an effective, strategically controlled amount of computation time. The metaheuristic starts by decomposing the problem into smaller, independent sub-problems that are efficiently solved using an algorithm of choice, sequentially or in parallel. The obtained solutions are then merged to form a solution for the original problem, and then further optimized and processed to ensure feasibility. The metaheuristic aims to dramatically improve the computation time of a given Orienteering Problem algorithm without a significant decrease in the solution quality of that algorithm, especially for large Orienteering Problems. We have validated the effectiveness of the proposed metaheuristic design through a set of computational experiments. In particular, using a state-of-the-art heuristic and an exact algorithm, we have shown that it is significantly beneficial to use the Orienteering Problem algorithm plugged into our metaheuristic, as opposed to using it as a standalone algorithm. This was found to be especially true for large problems. As a result, large instances of Orienteering Problems can be effectively tackled within reasonable time bounds even for online application scenarios.

Funder

QNRF

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

1. Orienteering problem: A survey of recent variants, solution approaches and applications;A Gunawan;European Journal of Operational Research,2016

2. Chapter 10: Vehicle Routing Problems with Profits

3. The team orienteering problem;IM Chao;European J of Operations Research,1996

4. Chekuri C, Korula N, Pal M. Improved algorithms for orienteering and related problems. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA); 2008.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3