Abstract
The fast-growing quantity of information hinders the process of machine learning, making it computationally costly and with substandard results. Feature selection is a pre-processing method for obtaining the optimal subset of features in a data set. Optimization algorithms struggle to decrease the dimensionality while retaining accuracy in high-dimensional data set. This article proposes a novel chaotic opposition fruit fly optimization algorithm, an improved variation of the original fruit fly algorithm, advanced and adapted for binary optimization problems. The proposed algorithm is tested on ten unconstrained benchmark functions and evaluated on twenty-one standard datasets taken from the Univesity of California, Irvine repository and Arizona State University. Further, the presented algorithm is assessed on a coronavirus disease dataset, as well. The proposed method is then compared with several well-known feature selection algorithms on the same datasets. The results prove that the presented algorithm predominantly outperform other algorithms in selecting the most relevant features by decreasing the number of utilized features and improving classification accuracy.
Funder
King Saud University, Riyadh, Saudi Arabia
Publisher
Public Library of Science (PLoS)
Reference74 articles.
1. An overview of machine learning;J.G. Carbonell;Machine learning,1983
2. Caruana R., Niculescu-Mizil A., An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning, (2006), 161–168.
3. A problem of dimensionality: A simple example;G. Gerard;IEEE Transactions on pattern analysis and machine intelligence,1979
4. Dimensionality reduction: a comparative;L. van der Maaten;J Mach Learn Res,2009
5. Feature extraction: A survey;M.D. Levine;Proc. IEEE,1969
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献