Modeling of Improved Sine Cosine Algorithm with Optimal Deep Learning-Enabled Security Solution

Author:

Almuqren Latifah1,Maray Mohammed2ORCID,Aljameel Sumayh S.3ORCID,Allafi Randa4,Alneil Amani A.5

Affiliation:

1. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Department of Information Systems, College of Computer Science, King Khalid University, Abha 61471, Saudi Arabia

3. SAUDI ARAMCO Cybersecurity Chair, Computer Science Department, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

4. Department of Computers and Information Technology, College of Sciences and Arts, Northern Border University, Arar 91431, Saudi Arabia

5. Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia

Abstract

Artificial intelligence (AI) acts as a vital part of enhancing network security using intrusion detection and anomaly detection. These AI-driven approaches have become essential components of modern cybersecurity strategies. Conventional IDS is based on predefined signatures of known attacks. AI improves signature-based detection by automating the signature generation and reducing false positives through pattern recognition. It can automate threat detection and response, allowing for faster reaction times and reducing the burden on human analysts. With this motivation, this study introduces an Improved Sine Cosine Algorithm with a Deep Learning-Enabled Security Solution (ISCA-DLESS) technique. The presented ISCA-DLESS technique relies on metaheuristic-based feature selection (FS) and a hyperparameter tuning process. In the presented ISCA-DLESS technique, the FS technique using ISCA is applied. For the detection of anomalous activities or intrusions, the multiplicative long short-term memory (MLSTM) approach is used. For improving the anomaly detection rate of the MLSTM approach, the fruitfly optimization (FFO) algorithm can be utilized for the hyperparameter tuning process. The simulation value of the ISCA-DLESS approach was tested on a benchmark NSL-KDD database. The extensive comparative outcomes demonstrate the enhanced solution of the ISCA-DLESS system with other recent systems with a maximum accuracy of 99.69%.

Funder

Deanship of Scientific Research at King Khalid

Princess Nourah bint Abdulrahman University

Deanship of Scientific Research at Northern Border University

SAUDI ARAMCO Cybersecurity Chair

Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3