Spatiotemporal variation of malaria incidence in parasite clearance interventions and non-intervention areas in the Amhara Regional State, Ethiopia

Author:

Zeleke Melkamu TirunehORCID,Gelaye Kassahun Alemu,Yenesew Muluken Azage

Abstract

Background In Ethiopia, malaria remains a major public health problem. To eliminate malaria, parasite clearance interventions were implemented in six kebeles (the lowest administrative unit) in the Amhara region. Understanding the spatiotemporal distribution of malaria is essential for targeting appropriate parasite clearance interventions to achieve the elimination goal. However, little is known about the spatiotemporal distribution of malaria incidence in the intervention and non-intervention areas. This study aimed to investigate the spatiotemporal distribution of community-based malaria in the intervention and non-intervention kebeles between 2013 and 2018 in the Amhara Regional State, Ethiopia. Methods Malaria data from 212 kebeles in eight districts were downloaded from the District Health Information System2 (DHIS2) database. We used Autoregressive integrated moving average (ARIMA) model to investigate seasonal variations; Anselin Local Moran’s I statistical analysis to detect hotspot and cold spot clusters of malaria cases; and a discrete Poisson model using Kulldorff scan statistics to identify statistically significant clusters of malaria cases. Results The result showed that the reduction in the trend of malaria incidence was higher in the intervention areas compared to the non-intervention areas during the study period with a slope of -0.044 (-0.064, -0.023) and -0.038 (-0.051, -0.024), respectively. However, the difference was not statistically significant. The Global Moran’s I statistics detected the presence of malaria clusters (z-score = 12.05; p<0.001); the Anselin Local Moran’s I statistics identified hotspot malaria clusters at 21 locations in Gendawuha and Metema districts. A statistically significant spatial, temporal, and space-time cluster of malaria cases were detected. Most likely type of spatial clusters of malaria cases (LLR = 195501.5; p <0.001) were detected in all kebeles of Gendawuha and Metema districts. The temporal scan statistic identified three peak periods between September 2013 and November 2015 (LLR = 8727.5; p<0.001). Statistically significant most-likely type of space-time clusters of malaria cases (LLR = 97494.3; p<0.001) were detected at 22 locations from June 2014 to November 2016 in Metema district. Conclusion There was a significant decline in malaria incidence in the intervention areas. There were statistically significant spatiotemporal variations of malaria in the study areas. Applying appropriate parasite clearance interventions is highly recommended for the better achievement of the elimination goal. A more rigorous evaluation of the impact of parasite clearance interventions is recommended.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference58 articles.

1. WHO. Global technical strategy for malaria 2016–2030. Geneva World Health Organization; 2015. Report No.: 9241564997.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3