Author:
Eshetu Tsegaye,Eligo Nigatu,Massebo Fekadu
Abstract
Abstract
Background
Surveillance of indoor and outdoor resting malaria vector populations is crucial to monitor possible changes in vector resting and feeding behaviours. This study was conducted to assess the resting behaviour, blood meal sources and circumsporozoite (CSP) rates of Anopheles mosquito in Aradum village, Northern Ethiopia.
Methods
Mosquito collection was conducted from September 2019 to February 2020 using clay pots (indoor and outdoor), pit shelter and pyrethrum spray catches (PSC). The species of Anopheles gambiae complex and Anopheles funestus group were identified using polymerase chain reaction (PCR). Enzyme-linked immunosorbent assay (ELISA) was done to determine CSP and blood meal sources of malaria vectors.
Results
A total of 775 female Anopheles mosquitoes were collected using the clay pot, PSC and pit shelter. Seven Anopheles mosquito species were identified morphologically, of which Anopheles demeilloni (593; 76.5%) was the dominant species followed by An. funestus group (73; 9.4%). Seventy-three An. funestus group screened by PCR, 91.8% (67/73) were identified as Anopheles leesoni and only 2.7% (2/73) were found to be Anopheles parensis. The molecular speciation of 71 An. gambiae complex confirmed 91.5% (65/71) of Anopheles arabiensis. The majority of Anopheles mosquitoes were collected from outdoor pit shelter (42.2%) followed by outdoor clay pots. The majority of the blood meal of An. demeilloni (57.5%; 161/280), An. funestus sensu lato 10 (43.5%) and An. gambiae (33.3%; 14/42) originated from bovine. None of the 364 Anopheles mosquitoes tested for Plasmodium falciparum and Plasmodium vivax sporozoite infections were positive.
Conclusion
Since the Anopheles mosquitoes in the area prefer to bite cattle, it may be best to target them with an animal-based intervention. Clay pots could be an alternative tool for outdoor monitoring of malaria vectors in areas where pit shelter construction is not possible.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference36 articles.
1. WHO. World malaria report 2022. Geneva: World Health Organization; 2022.
2. Taffese HS, Hemming-Schroeder E, Koepfli C, Tesfaye G, Lee MC, Kazura J, et al. Malaria epidemiology and interventions in Ethiopia from 2001 to 2016. Infect Dis Poverty. 2018;7:103.
3. Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malar J. 2011;10:353.
4. WHO. Global report on insecticide resistance in malaria vectors: 2010–2016. Geneva: World Health Organization; 2018.
5. Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 2013;12:56.