Knapping force as a function of stone heat treatment

Author:

Nickel Klaus G.ORCID,Schmidt PatrickORCID

Abstract

We propose a quantitative framework for understanding the knapping force requirements imposed by different raw materials in their unheated and heat-treated states. Our model interprets stone tool knapping as being the result of cracks formed during the first impact with a hammer stone, followed by continued stressing of these cracks that eventually leads to flake detachment. We combine bending strength, indentation fracture resistance and “Griffith” crack lengths of flint and silcrete to obtain functions identifying critical forces for flaking without or after heat treatment. We argue that these forces are a key factor for understanding the “knappability” of different raw materials, because only forces with 100N or less can be used for very precise strike control. Our model explains for the first time why experimental knappers frequently observe that flint (a stronger material, which, in our case, has a strength above 100 MPa) is easier to knap than silcretes (which is relatively weaker with strength values at or below 60 MPa). Our findings allow for understanding the differences between heat-treated and untreated flint and silcrete in terms of knapping quality, and they allow to compare the qualities of different raw materials.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference60 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3