Nuclei segmentation of HE stained histopathological images based on feature global delivery connection network

Author:

Shi PengORCID,Zhong Jing,Lin Liyan,Lin Lin,Li Huachang,Wu Chongshu

Abstract

The analysis of pathological images, such as cell counting and nuclear morphological measurement, is an essential part in clinical histopathology researches. Due to the diversity of uncertain cell boundaries after staining, automated nuclei segmentation of Hematoxylin-Eosin (HE) stained pathological images remains challenging. Although better performances could be achieved than most of classic image processing methods do, manual labeling is still necessary in a majority of current machine learning based segmentation strategies, which restricts further improvements of efficiency and accuracy. Aiming at the requirements of stable and efficient high-throughput pathological image analysis, an automated Feature Global Delivery Connection Network (FGDC-net) is proposed for nuclei segmentation of HE stained images. Firstly, training sample patches and their corresponding asymmetric labels are automatically generated based on a Full Mixup strategy from RGB to HSV color space. Secondly, in order to add connections between adjacent layers and achieve the purpose of feature selection, FGDC module is designed by removing the jumping connections between codecs commonly used in UNet-based image segmentation networks, which learns the relationships between channels in each layer and pass information selectively. Finally, a dynamic training strategy based on mixed loss is used to increase the generalization capability of the model by flexible epochs. The proposed improvements were verified by the ablation experiments on multiple open databases and own clinical meningioma dataset. Experimental results on multiple datasets showed that FGDC-net could effectively improve the segmentation performances of HE stained pathological images without manual interventions, and provide valuable references for clinical pathological analysis.

Funder

Fujian Science and Technology Innovation Joint Fund

National Fund for Fostering Talents of Basic Science

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference47 articles.

1. Histopathological image analysis using image processing techniques: an overview;AD Belsare;Signal & Image Processing,2012

2. Histopathological image analysis: areview;MN Gurcan;IEEE reviews in biomedical engineering,2009

3. Scoring nuclear pleomorphism in breast cancer;B Dunne;Histopathology,2001

4. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up;W. C Elston;Histopathology,1991

5. Hallmarks of Cancer: The Next Generation;H Weinberg;cell,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3