Semi-supervised nuclei segmentation based on multi-edge features fusion attention network

Author:

Li Huachang,Zhong Jing,Lin Liyan,Chen Yanping,Shi PengORCID

Abstract

The morphology of the nuclei represents most of the clinical pathological information, and nuclei segmentation is a vital step in current automated histopathological image analysis. Supervised machine learning-based segmentation models have already achieved outstanding performance with sufficiently precise human annotations. Nevertheless, outlining such labels on numerous nuclei is extremely professional needing and time consuming. Automatic nuclei segmentation with minimal manual interventions is highly needed to promote the effectiveness of clinical pathological researches. Semi-supervised learning greatly reduces the dependence on labeled samples while ensuring sufficient accuracy. In this paper, we propose a Multi-Edge Feature Fusion Attention Network (MEFFA-Net) with three feature inputs including image, pseudo-mask and edge, which enhances its learning ability by considering multiple features. Only a few labeled nuclei boundaries are used to train annotations on the remaining mostly unlabeled data. The MEFFA-Net creates more precise boundary masks for nucleus segmentation based on pseudo-masks, which greatly reduces the dependence on manual labeling. The MEFFA-Block focuses on the nuclei outline and selects features conducive to segment, making full use of the multiple features in segmentation. Experimental results on public multi-organ databases including MoNuSeg, CPM-17 and CoNSeP show that the proposed model has the mean IoU segmentation evaluations of 0.706, 0.751, and 0.722, respectively. The model also achieves better results than some cutting-edge methods while the labeling work is reduced to 1/8 of common supervised strategies. Our method provides a more efficient and accurate basis for nuclei segmentations and further quantifications in pathological researches.

Funder

Natural Science Foundation of Fujian Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference45 articles.

1. Artificial intelligence and computational pathology;M Cui;Laboratory Investigation,2021

2. Modes of cancer cell invasion and the role of the microenvironment;AG Clark;Current opinion in cell biology,2015

3. Histopathological image analysis using image processing techniques: An overview;A Belsare;Signal & Image Processing,2012

4. Image segmentation method using thresholds automatically determined from picture contents;YB Chen;Eurasip journal on image and video processing,2009

5. A new approach for segmentation and quantification of cells or nanoparticles;Z Wang;IEEE Transactions on Industrial Informatics,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Automatic Nuclei Segmentation Technique using Unsharp Masking;2023 IEEE 15th International Conference on Computational Intelligence and Communication Networks (CICN);2023-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3